4. MOSSAKOVSKII V.I. and MOSSAKOVSKAYA L.R., Strength of an elastic space weakened by a plane, almost circular, crack. Gidroaeromekhanika i Feoriia Uprugosti. vyp.22, Izd. Dnepropetr. Univ., 1977.
5. MUSKHELISHVILI N.I., Certain Fundamental Problems of the Mathematical Theory of Elasticity, Nauka, Moscow, 1966.
6. GALIN L.A., Contact Pxoblems of Elasticity Theory. Gostekhizdat, Moscow, 1953.
7. UFLIAND TA.S., Integral Transforms in Problems of Elasticity Theory, Nauka, Leningrad, 1968.
8. SHAH R.C. and KOBAYASHI A.S., Stress intensity factor for an elliptic crack under arbitrary normal loading, Engng. Fract. Mech., 3, 1, 1971.

Translated by M.D.F.

PMM U.S.S.R., Vol. 49,No.6,pp. 739-745,1985
Printed in Great Britain
0021-8928/B5 \$10.00+0.00
Pergamon Journals Ltd.

determination of the average characteristics of elastic frameworks*

A.G. KOLPAKOV

A method is proposed for the approximate calculation of the average elastic characteristics of fine-celled framework structures of periodic configuration. The method is based on approximation of the "cell problem" of the theory of averaging /1-4/by problems on the deformation of appropriate structures of beam, shell, etc., types. It is shown that the approximate values obtainable for the average characteristics and the solution of their appropriate problems are distinguished from the exact solutions by a quantity determined only by the error of the model being used. Examples are considered, namely, beam and box frameworks, and the construction of a framework with negative poisson's ratios.

Methods for the average description of bodies containing a large number of fine vacancies / , 2/ enable the structure of perodic configuration to be replaced by the consideration of continuous bodies similar in mechanical behaviour but with so-called average characteristics. The problem of finding the average characteristics is reduced in /2/ to the so-called cell problem of elasticity theory whose solution is quite difficult. At the same time, the solution of the cell problem in framework structures whose periodic element is a beam- or shell-type structure can be obtained by approximate methods to any accuracy, which is governed merely by the selection of the model.
An elastic structure of periodic configuration with perodicitiyy cell (PC) in the form of a parallelepiped $P_{e}=\varepsilon P_{1}=\left\{\varepsilon x: x \in P_{1}\right\}$ is considered, where $P_{1}=\left\{x \subseteq R^{n}:-\mu_{i} / 2 \leqslant x_{i} \leqslant \mu_{i} / 2\right.$, $i=1, \ldots, n)(n=2,3)$ is a rectangular parallelepiped with a characteristic length of che sides equal to one $\left(\mu_{1}-1\right)$. The elastic material does not occupy the whole $p C P$ but only a part K_{2}, which can be represented in the form $K_{2}=\varepsilon K_{1}$. Under the condition that the characteristic (absolute or relative) PC dimension $\varepsilon \rightarrow 0$, production of the average is possible $/ 2 /$. To determine the average elastic constants $\left\{\bar{a}_{i j k l}\right\}$ of a medium formed on the basis of the PC P_{e} the part K_{2} occupied by a material with the elastic constants $\left\{a_{i j k}\right\}$ should minimize the functional /2/

$$
\begin{align*}
& F(u)=\frac{1}{\operatorname{mes} p_{i}} \int_{K_{i}} a_{i j k l}(\text { def } u)_{i j}(\operatorname{def} u)_{k 1} d x \tag{1}\\
& (\operatorname{def} u)_{i j}=1 / 2\left(u_{i, j}+u_{j, i}\right)
\end{align*}
$$

in the set of functions $\left\{H_{2}{ }^{1}\left(P_{1}\right)\right\}^{n}$ under the additional conditions

$$
\begin{gather*}
\int_{P_{2}} u(x) d x=0 \tag{2}\\
\mathbf{u}-1 / \mathrm{z}\left(x_{a} e_{B}+x_{\beta} \mathrm{e}_{\mathrm{t}}\right) \in \Pi_{1} \tag{3}
\end{gather*}
$$

Here and henceforth, Π_{1} is a class of functions periodic in $p_{1}\left(e_{2}, e_{B}\right.$ are basis unit
vectors of the Cartesian coordinate system). Afterwards, the average elastic constants are expressed in terms of the solution of problem (1)-(3) denoted by $u^{\alpha \beta}$ (the indices α, β are from condition (3)) /2/

$$
\begin{equation*}
\bar{a}_{a \beta y d}=\frac{1}{\operatorname{mes}^{2} P_{2}} \int_{\mathbf{K}_{1}} a_{i j k l}\left(\operatorname{def} u^{\alpha \beta}\right)_{i j}\left(\operatorname{def} u^{\alpha b}\right)_{k 1} d x \tag{4}
\end{equation*}
$$

It is convenient to transfer to the differential mode of writing the problem (1) - (3). The Euler equation for (1)-(3) has the form
for any function $\varphi \in\left\{H_{2}{ }^{1}\left(P_{1}\right)\right\}^{n}$ satisfying condition (2) and the condition that follows from (3)

$$
\begin{equation*}
\Phi(x) \in \Pi_{2} \tag{6}
\end{equation*}
$$

By virtue of the arbitrariness of the values of the function $\varphi(x)$ within the domain K_{1} it follows from (5) that in this domain the function u satisfies the equilibrium equation with zero mass forces: $\left\{a_{i} j_{k}(d e f u)_{k l}\right\}_{, j}=0$. By virtue of the arbitrariness of the values of $\varphi(x)$ in the domain $P_{3} \backslash K_{1}$ we obtain that

$$
\begin{equation*}
\int_{K_{\mathbf{K}}} u(x) d x=0 \tag{7}
\end{equation*}
$$

We consider the integral with respect to $\partial P_{1} \cap \partial K_{1}$ in (5) (i.e., over the common part of the boundaries of the PC P_{1} and the domain K_{1} occupied by the elastic material). Since the function $\boldsymbol{Y}(\mathbf{x})$ is periodic in P_{1}, the integral mentioned can be rewritten in the form

$$
\begin{equation*}
\sum_{j=1}^{n} \int_{r_{j} \cap a K_{i}}\left[a_{i j k l}(\text { def } u)_{k i} n_{j}(x)+a_{i j k l}(\text { def } u)_{k l} n_{j}\left(x-\mu_{j} e_{j}\right)\right] \varphi_{i}(x) d x \tag{8}
\end{equation*}
$$

where Γ_{j} is the face of the $P C P_{1}$ perpendicular to the axis $O x_{j}$ and intersecting it at $x_{j}=$ $\mu_{j} / 2$. The coordinates of the vector normal to the face Γ_{j} are $\left\{n_{i}(x)\right\}=\left\{0, \ldots, \delta_{i j}, \ldots, 0\right\}$ and of the vector normal to the opposite face are $\left\{0, \ldots,-\delta_{i}, \ldots, 0\right\}$. On each of the faces Γ_{j} the set of traces of the functions from the space $\left\{H_{2}{ }^{1}\left(P_{1}\right)\right)^{n}$ that satisfy (2) ana (3) compact in the space $\left\{L_{2}\left(\Gamma_{j}\right)\right\}^{n} / 5 /$; consequently it follows from (8) that

$$
a_{i j k i}(\operatorname{def} u)_{k l} n_{j}(x)+a_{i j k l}(\operatorname{def} u)_{k l} n_{j}\left(x-\mu \mu_{j}\right)=0
$$

for $\mathbf{x} \in \Gamma_{i} \cap \partial K_{1}$. The quantities $\sigma_{n}=\left\{a_{i j k l}(\text { def } u)_{k_{l}} n_{j}\right\}$ determine the stress vector. Hence

$$
\begin{equation*}
\sigma_{n}(x)+\sigma_{n}\left(x-\mu e_{j}\right)=0, \quad x \in \partial \Gamma_{j} \cap \partial K_{1} \tag{9}
\end{equation*}
$$

The third term in (5) yields the following condition: the normal stresses are $\sigma_{n}=\left\{a_{i j k}\right.$ $\left.(\operatorname{def} \mathbf{u})_{k i} n_{j}\right)=0$ on $\partial P_{1} \backslash\left(\partial P_{1} \cap \partial K_{1}\right)$ (i.e., on the part of the boundary of the domain K_{1} that does not intersect the faces of the PC P_{1}). The formulation of the problem is obtained.

Let a cell structure (i.e., a structure occupying the domain K_{1} of the PC P_{1}) be formed by elements having characteristic thicknesses of the order of $h_{1}, \ldots, h_{n}(n=2,3)$ in the direction of the coordinate axes). Depending on whether one or two of the quantities h_{t} are small: $0<h_{i} \& \mu_{i} \sim 1$, we have a beam or plate (shell). The requirement that the h_{i} must be fixed, although small, non-zerc numbers is essential here. Without the imposition of this condition, condition (4) in $/ 2 /$, the sufficient condition for averaging, would not be satisfied. In practice, we can confine ourselves to the case when $10^{-3} \leqslant h_{i} / \mu_{i} \leqslant 10^{-1} / 6-8 /$. The beam, plate, etc. theory problems that occur later are understood tc be approximate solutions of the initial problem of elasticity theory with a certain accuracy α (in the norms to be mentioned later: .

Average characteristics of a plane beam framework. Let us consider a plane framework with a PC P_{1} of the type shown in Figs.1-3. Let the width of the elements forming the domain K_{1} satisfy the condition $0<h_{i} \leqslant \mu_{i}-1$ and let the domain mentioned be occupied by an elastic material with Young's modulus E and poisson's ratio v. The solution of the elasticity thecry problem of the deformation of such a structure is approximated by the solution of the problem. of the deformation of a system of rigidly clamped beams (at their points of intersection) /7/ that generally operates under tension and bending. We will describe the beam deformation within the framework of the hypothesis of undeformed normals /6-8/.

We will construct a problem corresponding to the initial problem. Because the mass forces and stresses on the beam faces that do not intersect the PC P_{1} equal zero, the displacements of each of the beams satisfy the well-known equilibrium equations with zero mass forces $/ 6-5 /$. The corollaries of conditions (2), (3), (9) require a more detailed examination. We let va, w_{a} denote the displacements of points on the middle axis of the beam numbered with the subscript
α in the direction $0_{1 \alpha}$ tangent to the undeformed axis of the beam and the direction $e_{2 \alpha}$ normal to this same axis. The displacements u of points of the beam considered as a solid are related to $\left\{v_{a}, w_{a}\right\}$ by the hypothesis of the undeformed normal $/ 6 /$: $\mathbf{u} \approx \mathbf{U} \boldsymbol{U}_{\mathrm{E}} v_{a} e_{1 a}+w_{a} e_{2 a}+\xi$ $\left(N_{\alpha}-e_{\alpha \alpha}\right)$, where N_{α} is the normal direction to the deformed axis of the beam $\left(N_{\alpha}=e_{\alpha a}+w_{\alpha}{ }^{\prime} e_{1 \alpha}\right.$ $/ 6,7 /), \xi \in\left[-h_{a} / 2, h_{a} / 2\right]$ is the coordinate across the beam axis.

Fig. 1

Fig. 2

Fig. 3

In the case under consideration condition (2) results in the condition

$$
\begin{equation*}
\sum_{\alpha=1}^{m} \int_{L_{\alpha}}\left(v_{\alpha} \mathrm{e}_{1 \alpha}+w_{\alpha} \mathrm{e}_{\mathrm{A}_{\alpha}}\right) d s=0 \tag{10}
\end{equation*}
$$

(m is the number of beams forming the cell structure). Integration is over the beam axes denoted by $L_{a}, \alpha=1, \ldots, n$.

We examine the junction of beams belonging to adjacent PC or the ends of beams on opposit. faces of the PC (Fig.1) by virtue of the periodicity of the problem under consideration. Condition (9) results in a deduction about the oppositeness of the forces on both sides of the line $A C$ when the oppositeness of the nomals to opposite faces of the PC P_{1} is taken into account. Furthermore, the elements $A B C$ and $A C D$ are in equilibrium under the effect of zero external forces and strains in the sections $A B, A C$ and $A C, A D$. We hence obtain that the strains in the sections $A B$ and $A D$ with the form $N_{\alpha} e_{1 \alpha}+Q_{\alpha} e_{2 \alpha}$, where N_{α}, Q_{α} are the tensile and transverse forces $/ 7,9 /$, are opposite. Since the moments on both sides of the line $A C$ are opposite by virtue of (9), the moments in the sections $A B$ and $A D$ are opposite by virtue of the equilibrium condition for the elements $A B C$ and $A C D$.

Furthermore, noting that the sections $A B$ and $A D$ are oriented oppositely (the direction $\mathbf{e}_{1 a}$ enters the element $A B C$ and emerges from the element $A C D$, see Fig.l), we obtain the conaition

$$
\begin{equation*}
N_{\alpha} \mathbf{e}_{1 \alpha}+Q_{\alpha} \mathbf{e}_{2 \alpha}, \quad M_{\alpha} \in \Pi_{1} \tag{11}
\end{equation*}
$$

The quantities $N_{\alpha}, Q_{\alpha}, M_{\alpha}$ mentioned, the tensile force, transverse force, and moment, are referred to identicaily oriented sections of the beam.

The kinematic conditions resulting from (3) have the form

$$
\begin{equation*}
v_{\alpha} e_{1 \alpha}+w_{\alpha} e_{2 \alpha}-1 / 2 h_{\alpha} w_{\alpha}^{\prime} e_{1 \alpha}-1 / 2\left(x_{\gamma} e_{\delta}+x_{\delta} e_{\gamma}\right), \quad w_{\alpha}^{\prime} e_{1 \alpha} \in \Pi_{1} \tag{12}
\end{equation*}
$$

The peroidicity of the first function is obtained as a corollary to condition (2) in application to the point A (Fig.l). The periodicity of the second function is obtained by imposing a requirement about conservation of the magnitude of the angle between the beam axes during deformation (in the general case this condition cannot be derived from the hypothesis of undeformed normals since this hypothesis is not applicable in the domain $A B C D$).

Conditions (21) anc (i2) simplify considerably in the special case when the direction of the tangent to the undeformed beam axis is $e_{1 \alpha} \in \Pi_{1}$. In the case mentioned from (11) and (12) we have the condition

$$
\begin{align*}
& N_{\alpha}, \quad Q_{\alpha}, \quad M_{\alpha}, \quad v_{\alpha} e_{1 \alpha}+w_{\alpha} e_{z \alpha}-2 / 2\left(x_{\gamma} e_{\gamma}+x_{0} e_{\gamma}\right) \tag{13}\\
& w_{a}^{\prime} \in \Pi_{1}, \quad \alpha=1, \ldots, m
\end{align*}
$$

direction to the beam axis $e_{2 a}$ on the faces of the $P C P_{1}$ is normal to these faces, the condition $w_{a}^{\prime} \in \Pi_{1}$ is already a direct consequence of (3) and the hypothesis of undeformed normais.

Approximate values of the elastic constants. The beam theory problem was considered above as a problem from whose solution a certain displacement field U approximating the true displacement field u determined from the solution of problem (1)-(3) can be constructed on the basis of the kinematic hypothesis taken. We denote the accuracy of this approximation (the error of the model) by α, i.e.,

$$
\begin{equation*}
\|u-U\| \equiv\|\operatorname{def} u-\operatorname{def} U\|_{L_{2}\left(P_{L}\right)} \leqslant \alpha \tag{14}
\end{equation*}
$$

We introduce the quantity

$$
\begin{equation*}
A_{a B v o}=\frac{1}{\operatorname{mes} P_{1}} \int_{X_{1}} a_{i j k l}\left(\operatorname{def} U^{a \cdot \beta}\right)_{i j}\left(\operatorname{def} U^{W d}\right)_{k i} d x \tag{15}
\end{equation*}
$$

which it is natural to call approximate values lin the sense of their being used to calculate the functions $U \alpha \beta$) of the average elastic constants. The quantities ($A_{a p y o}$) approximate the exact values of the average elastic constants $\left\{\bar{a}_{\text {apro }}\right\}$ given by (4) since by virtue of (4) and (15)

$$
\begin{align*}
& \left.\mid \bar{a}_{a \beta \gamma \delta}-A_{a \beta \gamma b}\right\} \left.=\frac{1}{m e s F_{3}} \right\rvert\, \int_{Z_{2}} a_{i j k l}\left[\left\{d \text { def } u^{\alpha \beta \beta}\right\rangle_{i j}\left(d \text { def } u^{v s}\right\rangle_{k l}-\right. \tag{16}\\
& \left(\text { def } u^{a b}\right)_{i j}\left(\text { def } U^{\gamma b}\right)_{k l}+\left(\operatorname{def} u^{\alpha \beta}\right)_{i j}\left(\operatorname{def} U^{\gamma b}\right)_{k l}- \\
& \text { (def } \left.\left.U^{a \beta}\right)_{i j}\left(\text { def } U^{\gamma \delta}\right)_{k l}\right] d x \mid \leqslant \\
& \frac{1}{\text { mes } p_{i}}\left\{a_{i j k 1} \mid\left(\| \| U^{\alpha \beta} \| \mid+\alpha\right) \alpha=C\left(\left\|U^{\alpha \beta}\right\| \mid+\alpha\right) \alpha\right. \\
& \left(\| \cdot\left|=\max _{i j k i}\right| \cdot\left|, \max _{\alpha, 0}\right| \cdot \mid\right)
\end{align*}
$$

Remarks. 1°. As is seen from the formula obtained, to estimate the closeness of the exact and approximate values of the average elastic constants, it is necessary to have an estimate of the quantity $\left\|U^{\alpha \beta}\right\|$. Such estimates can be obtained in specific cases, as is done below.
2°. For $\alpha=\gamma, \beta=\delta$, expressions (4) and (14) agree with twice the elastic strain energies corresponding to the displacement fields $u^{a \beta}$ and $U^{a b}$.

Estimate of the eloseness between the solutions of the average problem and the problem with coefficients $\left\{A_{a \beta v o}\right\}$. According to (2), the displacements v_{e} in the initial framework structure converge as $\varepsilon \rightarrow 0$ to the solution y of the elasticity theory problem of the deformation of a continuous medium with the elastic constants $\left\{\bar{a}_{a \beta y o}\right\}$ given by (4). This last problem has the weil-known form

$$
\begin{equation*}
\left[\bar{a}_{i j k l} v_{k, l}\right]_{j j}=f_{i},\left.\quad \mathbf{v}\right|_{\theta Q}=\mathbf{v}^{\circ} \tag{17}
\end{equation*}
$$

Convergence holds in the following sense $/ 2 /$: let Q be the domain occupied by the framework structure (union of cells of the form P_{e}), and Q_{e} the domain occupied by the intrinsically elastic material (urion of the domain K_{c}). Then $/ 2 /$

$$
\begin{equation*}
\left\|v_{\varepsilon}-v\right\|_{L_{1}\left(Q_{q}\right)}=\delta\left(h_{1}, \ldots, h_{n}, \varepsilon\right) \tag{18}
\end{equation*}
$$

where for any fixed $h_{i}>0$ the quantity $\delta\left(h_{1}, \ldots, h_{n}, \varepsilon\right) \rightarrow 0$ as $\varepsilon \rightarrow 0$.
We consider the probler of the deformation of a medium with the elastic constants $\left\{A_{a \beta p}\right\}$ defined above (that approximate $\left\{\tilde{a}_{\text {apvo }}\right\}$ to the accuracy of (16),

$$
\begin{equation*}
\left[A_{i j k!} V_{k, i}\right]_{j} \approx f_{i},\left.\quad \mathbf{V}\right|_{\nabla Q}=\mathbf{v}^{\theta} \tag{19}
\end{equation*}
$$

As follows from $/ 2 /$, the operator in (19) is positive-definite. We denote its ellipticity factor by $\beta\left(h_{1}, \ldots, h_{n}\right)$ (since β can depend and, as will be seen later, actually depends on h_{1}, \ldots, h_{n}). We esimate the difference between the solutions of problems (17) and (19). Compiling the problem for the difference between the solutions of (17) and (19) and multiplying the equation therein by $\mathbf{v}-\mathbf{V}$, we take account of (16) and obtain the estimate

$$
\begin{equation*}
\|v-V\|_{L_{1}(Q)} \leqslant \Lambda, \quad \Lambda=\frac{c\left(\left\|V_{0} \mathcal{U}_{\|}\right\|+a\right)\|V\|}{\beta\left(h_{1}, \cdots, h_{n}\right)} \tag{20}
\end{equation*}
$$

It follows from (8) and (20. that

$$
\begin{equation*}
\left\|\mathbf{v}_{e}-\mathbf{V}\right\|_{h_{1}\left(Q_{e}\right)} \leqslant\left\|\mathbf{v}_{e}-\mathbf{v}\right\|_{2}\left(Q_{z}\right)+\|\mathbf{v}-\mathbf{V}\|_{L_{r}(Q)} \leqslant \delta\left(h_{1}, \ldots, h_{n_{1}} \varepsilon\right)+\Lambda \tag{21}
\end{equation*}
$$

since $h_{i}>0$ is a fixed number, by virtue of the recalled results $/ 2 /$, we obtain from (21)

$$
\begin{equation*}
\lim _{t \rightarrow 0}\left\|v_{e}-v\right\|_{L_{i}\left(Q_{e}\right)} \leqslant \Lambda \tag{22}
\end{equation*}
$$

The estimates (16), (20)-(22) show that the approximate values of the elastic constants \{ $\bar{a}_{\text {afyb }}$ \} can generally be calculated by the proposea method to any accuracy determined only by the error in the model (the estimate (16)), where the solution of problem (19) will approximate the solution of the indtial and average problems with an accuracy also determinea just by the selection of the model (the estimates (20)-(22)).

Construction of the quantities $\left\{A_{\text {apyo }}\right\}$ ensuring a given accuracy of the approximation of the elastic constants and the solutions is not trivial because of the dependence of the
 dependence of the quantities listed on h_{1}, \ldots, h_{n} in specific cases, conditions on the error of the model a can be obtained that are required for the evaluation of $\left\{\bar{a}_{a b p o}\right\}$ to a given accuracy.
plane rectangular beam framework. We consider a framework whose pC P_{1} is shown in Fig. 2 . We apply the method described above for the approximate calculation of the average framework characteristics. We note that the directions \mathbf{e}_{12} are periodic in \boldsymbol{P}_{1} in the case under consideration and conditions (11) and (12) can be taken in the form (13).
10. $a=\beta$. As can be seen conditions (13) correspond to the case of tension on the beam structure shown in Fig. 2 in the direction of one of the coordinate axes. In the case $\alpha=\beta=$ 1 , the aisplacement field is $\mathrm{U}^{11}=x_{1} \mathrm{e}_{1}$ in the horizontal beam while $\mathrm{U}^{11}=0$ in the vertical beam. According to (15), we obtain

$$
A_{i i i i}=\frac{E}{1-v^{i}} \frac{h_{i}}{\mu_{i}}, \quad i=1,2
$$

The quantities h_{1}, μ_{i} are shown in Fig. 2.
20. $\alpha=1, \beta=2(\alpha=2, \beta=1)$. Conditions (13) reduce to the following in the case under consideration:

$$
\begin{equation*}
\left[v_{1} \mathrm{e}_{1}+w_{1} \mathrm{e}_{2}\right]_{1}=\mu_{\mathrm{r}} \mathrm{e}_{2},\left[v_{2} \mathrm{e}_{2}+w_{2} \mathrm{e}_{1}\right]_{2}=\mu_{2} \mathrm{e}_{1} \tag{23}
\end{equation*}
$$

$w_{i}^{\prime}, w_{i}{ }^{*}, w_{i}^{\prime \prime}$ are periodic in $\left[-\mu_{i} / 2, \mu_{i} / 2\right], i=1,2\left([f)_{i}=f\left(\mu_{i} / 2\right)-f\left(-\mu_{i} / 2\right)\right)$,
The problem of bending (without tension) of the beam system shown in Fig. 2 corresponds to conditions (23) for a symmetric structure (Fig.2). In addition to the equilibrium conditions

$$
\begin{equation*}
w_{2} \mathrm{VV}=0, w_{2} \mathrm{IV}=0 \tag{24}
\end{equation*}
$$

the equilibrium condition of an element lying at the intersection of the beams should be considered here. Since only moments (there is no beam tension) act on it $\quad M_{i}=E h_{i}^{3}[12(1-$ $\left.\left.v^{2}\right)\right\}^{-1} w_{i}^{\prime \prime}$, then

$$
\begin{equation*}
h_{1}^{3}\left(u_{1}^{\prime \prime}(+0)-u_{1}^{\prime \prime}(-0)\right)-h_{2}^{3}\left(w_{2}^{*}(+0)-w_{3}^{\prime \prime}(-0)\right)=0 \tag{25}
\end{equation*}
$$

Because of symmetry the point of intersection of the beam axes does not experience displacement, i.e.,

$$
\begin{equation*}
w_{i}(-0)=w_{i}(-0)=0, \quad i=1,2 \tag{26}
\end{equation*}
$$

Moreover, the angles between the bean axes do not change during deformation

$$
\begin{equation*}
w_{i}^{\prime}(+0)=w_{i}^{\prime}(-0), i=1,2 ; w_{1}^{\prime}(+0)=-w_{2}^{\prime}(-0) \tag{27}
\end{equation*}
$$

Solving problem (23)-(27), which is not difficult, and using Remark 2 , we obtain

$$
\begin{equation*}
A_{1212}=\frac{4 E}{1-v^{2}} \frac{h_{2^{3}}^{3} h_{3}^{3}}{\mu_{1} \mu_{2}\left(\mu_{1} k_{2}^{3}+\mu_{2} \hbar_{\lambda}^{3}\right)^{2}}\left[\frac{h_{2}^{3}}{\mu_{1}^{2}}+\frac{h_{3}^{3}}{\mu_{2}^{2}}\right] \tag{28}
\end{equation*}
$$

The remaining elastic constants equal zerc.
Sumarizing, we obtain the governing relationships for the average medium (in which the constants (Aapyo agree with the exact values of the average elastic constants $\left\{\bar{a}_{\text {apyo }}\right\}$ to an accuxacy determine d by estimate (i6;)

$$
\begin{align*}
\sigma_{i i} & =\frac{E}{1-\gamma^{2}} \frac{h_{i}}{\mu_{i}} \varepsilon_{i ;}, i=1,2 \tag{29}\\
\sigma_{i j} & =\frac{4 E}{i-v^{2}} \frac{h_{1}^{3} h_{n_{3}^{3}}}{\mu_{2}\left(\mu_{2} h_{2}^{3}+\mu_{2} h_{1}^{3}\right)^{3}}\left[\frac{h_{2}^{3}}{\mu_{2}^{3}}+\frac{h_{1}^{3}}{\mu_{2}^{2}}\right] \varepsilon_{i j}, \quad i \neq j
\end{align*}
$$

A more detailed estimate of the closeness between the approximate values of the elastic constants $\left\{A_{a \beta \gamma \delta}\right\}$ and the solutions of the corresponding problem (19) to the exact values can be carried out in the case considered. As is seen from (29), the coefficients $\left\{A_{\text {apro }}\right\}$ and the ellipticity factor $\beta\left(h_{1}, h_{2}\right)$ are of the order of $1 / E h_{i}{ }^{\prime \prime}$. Consequently, the quantities $\left\|U^{\alpha \beta}\right\|$ and $\| V_{\|}$in (16), (20)-(22) are of the order of $E h_{i}$. We hence obtain that the right side of the estimate (16) is of the order of $\alpha\left(E h_{i}{ }^{8}\right)$ while the right side of the estimate (22) is of the order of $a /\left(E h_{i}\right)^{2}$. The possibility of obtaining the approximate values of the average elastic constants and the solutions of the appropriate problem by virtue of the estimates presented follow from the fact that the error α can be made less than any given quantity (in particular a quantity of the form $h_{i}{ }^{m}, m \in N$) by selection of an appropriate model, while the order of the quantities $\beta\left(h_{1}, h_{2}\right), \| \mathbb{U}^{\alpha \beta}, V_{\|}$is conserved as the error α of the model diminishes.

As follows from the above, the hypothesis of undeformed normals that was used above can be utilized to compute the characteristics of a plane beam framework for $E h_{i} \geqslant 1$ (the PC K_{1} of the structure is formed by fairly stiff elements) to the accuracy of order α. To obtain ($A_{\text {abyo }}$ \} with the required accuracy requires the use of more exact models in the general case (as is seen from before, the model possessing an accuracy $\alpha \sim h_{i}$, would solve the problem in the general case).

If a is understood to be the residual of the elastic strain energy in the modeling of the cellular structure, then the order of the right sides in (16), (22) is, respectively, a and $\left.a /\left(E h_{i}\right)^{3}\right)^{2}$.

The estimates (16), (20)-(22) enable us to deduce that as $\varepsilon \rightarrow 0$ the rectangular framework under consideration behaves as a solid elastic medium with goveming Eqs. (29) to the accuracy determined above. By virtue of (29) orthotropy of the elastic constants is characteristic for the framework. Even for a PC with identical dimensions in the directions of the $O x_{1}$ and $O x_{2}$ axes, the orthotropy is conserved. The presence of an analogous effect is noted $/ 4 /$ in the problem of the bending of a perforated plate. The coordinate axes are smooth for the tensor of the elastic constants $\left\{A_{\text {abvo }}\right\}$ and the framework possesses a zero Poisson's ratio in these axes (to the accuracy determined by (16)). Moreover, since the quantities $h_{1} \ll 1$, then, as is seen from (29), the framework prossesses a shear modulus considerably less than its tensile modulus in these same axes.

Spatial rectangular beam framework. Let the $P C P_{1}$ be formed by rectangular bars lying on the coordinate axes and having a width h_{i}, height H_{i}, and end coordinates $\mu_{i} / 2,-\mu_{i} / 2, i=1,2,3$. If $0<h_{i}, H_{i} \leqslant \mu_{i} \sim 1$, but are here fixed, the cell problem is approximated by a problem on the deformation of a system of beams similar to that examined above. The approximate governing relationships have the form

$$
\begin{align*}
& \sigma_{i 1}=\frac{E}{i-w^{2}} \frac{h_{i} H_{1} \mu_{i}}{\mu_{1} \mu_{2} \mu_{3}} \varepsilon_{i 1}, \quad i=1,2,3 \tag{30}\\
& \sigma_{12}=\frac{4 E}{1-v^{2}} \frac{h_{1}{ }^{3} h_{2}{ }^{3}}{\mu_{1} \mu_{2} \mu_{3}\left(\mu_{1} h_{2}{ }^{3}-\mu_{2} h_{1}{ }^{3}\right)^{3}}\left[\frac{H_{1} h_{3}{ }^{3}}{\mu_{1}^{2}}+\frac{H_{2} h_{1}^{3}}{\mu_{2}{ }^{2}}\right] \varepsilon_{12}
\end{align*}
$$

The equations connecting $\sigma_{13}, \varepsilon_{13}$ and $\sigma_{23}, \varepsilon_{23}$ are obtained from the equations for $\sigma_{12}, \varepsilon_{12}$ by permutation of the subscripts. As is seen from (30), the spatial framework retains the planar property noted above.

Frameworks of the types considered are utilized extensively as reinforcements in composite materials. In the case of fillers possessing low stiffness, the elastic characteristics of the composite are detemined by the characteristics of the frame. Consequently, the low framework shear stiffness noted above results in smallness of the shear stiffness of the composites they bond, which is essentiai for the examination of composite plates and shells 10, 11/.

Boxike framework, Let the PC P_{1} of a three-dimensional framework have the form presented in Fig. 2 in plane sections parallel te the coordinate plane $O x_{1} x_{2}$, while the third coordinate is $x_{s} \in\left[-\mu_{s} 2, \mu_{s} / 2\right]$. If $0<h_{i} \leqslant \mu_{i} \sim 1$. the cell problem is modelled by a probler on the deformatic: of two plates fixed rigidly along their line of intersection. The average governing equations (to the accuracy given by (27); have the form

$$
\begin{align*}
& \sigma_{i i}=\frac{E(1-v)}{(1+v)(1-2 v)} \frac{h_{i}}{\mu_{i}}\left(\varepsilon_{i j}-\frac{v}{1-v} e_{33}\right) \tag{31}\\
& \sigma_{d 3}=\frac{E}{1+v} \frac{h_{i}}{\mu_{i}} \varepsilon_{i 3}, \quad i=1,2 \\
& \sigma_{33}=\frac{E(1-v)}{(1+v)(1-2 v)}\left\{\left(\frac{h_{1}}{\mu_{1}}+\frac{h_{2}}{\mu_{2}}\right) e_{33}-\frac{v}{1-v}\left(\frac{h_{1}}{\mu_{1}} \varepsilon_{11}+\frac{h_{1}}{\mu_{2}} \varepsilon_{22}\right)\right\}
\end{align*}
$$

The equations conmecting $\sigma_{12}, \varepsilon_{12}$ agree with those presented in 129 . As follows from (31), a boxlike framework in the plane $O x_{1} x_{2}$ retains mainly the properties inherent in a plane framework. The framework behaves as an ordinary elastic material in the direction perpendicular to this plane: poisson's ratio is positive, and the shear and tension moduli are of the same order.

Framework structure with negative poisson's ratios. For a plane orthotropic continuous medium (when the principal axes coincide with the corodinate axes), the relation between the elastic constants $\left\{\bar{a}_{a b p b}\right\}$, Young's modulus E_{i} and Poisson's ratios v_{i} has awell-known form /9/. in particular

$$
E_{1} v_{2} /\left(1-v_{1} v_{2}\right)=\bar{a}_{1122} / \bar{a}_{2222}
$$

Since $\bar{a}_{\text {anzz }}$. E_{1}, and $1-v_{1} v_{2}$ are positive quantities $/ 9 /$, the sign of Poisson's ratio v_{2} agrees with the sign of \tilde{a}_{1122}. The same holds for poisson's ratio $v_{1} / 9 /$.

We consider the problem of the deformation of a plane framework structure whose PC p_{1} is displaced in Fig.3. The solution of this problem for $\mu_{,} \ll \mu_{i} \sim 1$ approximates the solution of
the problem about the deformation of a system of rigidly clamped beams. Utilizing the hypothesis of the undeformed normal, we calculate the coefficient A_{1129}. The solution is simplified if the presence of definite symmetry in the cell structure is used. Namely, a quadrant of the PC P_{1} can be considered (Fig.3). We consider the problem of the equilibrium of the element in question for zero mass forces with the conditions

$$
\begin{align*}
& v=u= \pm \frac{\mu_{1}}{4 \sqrt{2}} \text { at points } \quad\left(0, \frac{\mu_{2}}{4}\right),\left(\frac{\mu_{1}}{2}, \frac{\mu_{2}}{4}\right) \tag{32}\\
& v=u=0 \quad \text { at the point } \quad\left(\frac{\mu_{1}}{4}, 0\right),(\alpha=\beta=1) \\
& v=u=0 \text { at the points } \quad\left(0, \frac{\mu_{2}}{4}\right),\left(\frac{\mu_{1}}{2}, \frac{\mu_{2}}{4}\right) \\
& v=-\frac{\mu_{2}}{4}, u=0 \text { at the point } \quad\left(\frac{\mu_{1}}{4}, 0\right)(\alpha=\beta=2) \\
& u^{n}=0 \text { at the points }\left(0, \frac{\mu_{2}}{4}\right),\left(\frac{\mu_{1}}{2}, \frac{\mu_{8}}{4}\right) \text { for all mentioned } \alpha, \beta
\end{align*}
$$

and, moreover, the solution of the problem is symmetrical about the line $x_{1}=\mu_{1} / 4$.
It can be confirmed that merging the solutions of a problem of the kind mentioned for each cell structure quadrant yields the solution of the problem on the equilibrium of the structure displaced in Fig. 3 with conditions (13) (the vector e_{10} is periodic). The solution of the problem about the equilibrium of a quadrant of a cell structure element with conditions (32) is constructed analytically. This easily reproducible solution is not presented because of its awkwardness. Calculations showed that for $\mu_{1}=2 \sqrt{2}, \mu_{2}=4-\sqrt{2}$ the coefficient

$$
A_{1122}=\frac{4 E h}{\left(1-v^{2}\right) \mu_{1} 1_{2}} \int{ }^{111} v_{2} z^{2} d s+\frac{E / h^{3}}{3\left(1-r^{2} / \mu_{2} \mu_{2}\right.} \int w^{11^{n} u^{2} w^{\prime \prime} d s}
$$

takes a negative value (integration is along the axes of the cell structure quadrant). Therefcre, the framework with PC P_{1} shown in Fig. 3 in the axes mentioned here, behaves as a solid elastic medium with negative Poisson's ratios $r_{2} \cdot v_{2}$ to an accuracy given by the estimates (16), (20) -
(22) as $\varepsilon-0$.

REFERENCES

1. BAKHVALOV N.S. and PANASENKO G.P., Averagina of processes in periodic media. Mathematical Problems of the Mechanics of Composites Nauka, Moscow, 1984.
2. BERLIAND L.V., On vibrations of an elastic body with a large number of fine vacancies. Dokl. Akad. Nauk UkrSSR, Ser. A, 2, 1983.
3. KOLPAKOV A.G., On the determinatior. of certain effective characteristics of composites. Fifth All-Union Congress on Theoret. and Applied Mechanics. Annotated Reports ivauka, Alma-Ata, 1981.
4. BERLIAND L.V., Asymptotic description of a piate with a large number of fine holes, Sokl. Akad. Nauk UkrSSR, Ser. A, 10, 1983.
5. IIONS J.-I. and MAGENES E., Inhomogenecus Bcuncary Value Problems and Their Application /Russian translation/, Mir, Moscow, 1971.
6. TIMOSHENKO S.P., Strength of Materials, 1, Fizmatgiz, Moscow, 1960.
7. TIMOSHENKO S.F. and WOINOWSKI-KRIEGER, Platez and Shells, Fizmatgiz, MOSCOw, 1964.
8. RABOTNOV YU.N., Mechanics ef a Deformable Sc._i. Nauka, Moscow, 1979.
9. LEKHNITSKII S.G., Theory of Elasticity of an Anisotropic Solid. Nauka, Moscow, 1977.
10. KOLPAKOV A.G., Effective stiffnesses of composite plates, PMM, 46, 4, 1982.
11. AMBARTSUMIAN S.A., Thecry cf Amisctropic Plates, Nauka, Moscow, 1977.
